
Azure IoT Hub Client SL

With the “Azure IoT Hub Client SL” library, CODESYS controllers can exchange messages with

the “Azure IoT Hub” cloud service from Microsoft.

Product description

The “Azure IOT Hub” cloud service from Microsoft directly links IoT devices. (For more detailed

information, refer to https://azure.microsoft.com/en-us/services/iot-hub/). The “Azure IoT Hub

Client SL” library provides function blocks for sending and receiving messages. A sample project

demonstrates how to use the library.

The library contains separate function blocks for communication via HTTPS and MQTT. The

library supports the following functions:

Send “Device to Cloud (D2C)” messages (telemetry data)

Receive “Cloud to Device (C2D)” messages

Read the device twin

Update the device twin (desired properties only)

Subscribe Device Twin (desired properties, MQTT only)

Direct method call (Cloud -> Device, MQTT only)

Creation of a new azure SaS token (Shared Access Signature)

The sample project “Azure IoT Client SL Example.project” demonstrates how to use the

corresponding function blocks.

Getting started

1. Set up Azure IoT Hub and create devices in IoT Hub

see https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal

or https://docs.microsoft.com/en-us/azure/iot-hub/tutorial-connectivity

2. Generate shared access signatures (SaS tokens)

The authentication of a device is done via ‘Shared Access Signatures’ (SaS-Token). For access

via MQTT, a SaS token based on the device policy ‘device’ is required. For access via HTTPS,

an SaS token based on the device policy ‘device’ and an SaS token based on the policy

‘iothubowner’ are required. The SaS token can be generated e.g. via the Azure Cloud Shell

(Azure Portal), via the tool ‘Azure IoT Explorer’, or via function in library GenerateSasToken().

The function GenerateSasToken requires 4 input parameters (url-adress, primary key, policy

name, expiry) and returns SaS-Token as WSTRING(255).

• 

• 

• 

• 

• 

• 

• 

 

1/9

https://azure.microsoft.com/en-us/services/iot-hub/
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal
https://docs.microsoft.com/en-us/azure/iot-hub/tutorial-connectivity


 

Start cloud shell via Azure Portal

Command to generate a SaS token ‘device’:

az iot hub generate-sas-token -d YOUR_DEVICE_ID -n YOUR_IOT_HUB --du 

DURATION_IN_SECONDS --policy device

Command to generate a SaS token ‘iothubowner’:

az iot hub generate-sas-token -n YOUR_IOT_HUB --du DURATION_IN_SECONDS

 

Generate SaS-Token

For more information on ‘Cloud Shell’ and ‘Azure CLI’, click here:

https://docs.microsoft.com/en-us/cli/azure/iot/hub?view=azure-cli-latest

Alternatively, the ‘Azure IoT Explorer’ tool can be used to generate a SaS token (only for policy

‘device’).

see https://github.com/Azure/azure-iot-explorer

Download: https://github.com/Azure/azure-iot-explorer/releases

3. Setting the name of the IoT hub, device ID, and SaS token in the sample

project

sSubDomainName: Name of the Azure IoT Hubs without ‘azure-devices.net’(see 1.)

sDeviceId: Device ID (see 1.)

wsDeviceSaS: SaS token of the device (MQTT, HTTP) (see 2.)

Product Data Sheet

2/9

https://docs.microsoft.com/en-us/cli/azure/iot/hub?view=azure-cli-latest
https://github.com/Azure/azure-iot-explorer
https://github.com/Azure/azure-iot-explorer/releases


wsIoTHubOwnerSaS: SaS token of the IoT Hub owner (HTTP) (see 2.)

4. Downloading the project to the controller and starting it

Application AzureHTTPDemo

The following functions can be executed from the visualization:

Send D2C message

Get C2D message

Get device twin

Update device twin

 

Visualization of the HTTPS sample project

Applikation AzureMQTTDemo

The following functions can be executed from the visualization:

Connect to IoT Hub via MQTT

Send D2C message

Get C2D message

Get device twin

Update device twin

Direct method call

Subscribe device twin (desired properties)

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Product Data Sheet

3/9



 

Visualization of the MQTT sample project

5. Sending and receiving messages with the tool ‘Azure IoT Explorer’

With the tool ‘Azure IoT Explorer’ (download see 2.) messages can be displayed and sent.

Product Data Sheet

4/9



 

Azure IoT Explorer: Monitoring of D2C messages

Product Data Sheet

5/9



 

Azure IoT Explorer: Sending C2D messages

Product Data Sheet

6/9



 

Azure IoT Explorer: Remote method call

Options

In the Azure environment, messages are usually sent in JSON format. The CODESYS library

“JSON Utilities SL” is ideal for parsing and generating JSON data.

Product Data Sheet

7/9



General information

Supplier:

CODESYS GmbH

Memminger Strasse 151

87439 Kempten

Germany

Support:

Technical support is not included with this product. To receive technical support, please purchase

a CODESYS Support Ticket.

https://support.codesys.com

Item:

Azure IoT Hub Client SL

Item number:

Sales/Source of supply:

CODESYS Store

https://store.codesys.com

Included in delivery:

CODESYS package

System requirements and restrictions

Programming system CODESYS Development System V3.5.15.0 or later

Runtime system CODESYS Control V3.5.15.0 or later

Supported platforms and

devices

Note: Use the “Device Reader” project for locating the

functions supported by the PLC. The “Device Reader” project

is available in the CODESYS Store free of charge.

Additional requirements Microsoft Azure account with Azure IoT Hub service; Device

Explorer

Restrictions

Licensing License activation optional on CODESYS Key or Soft Key

(free of charge component of CODESYS Controls). Licensing

via Soft Key is strictly linked to hardware.

Note: Without a license the software runs for 30 minutes in

demo mode.

Required accessories -

• 

Product Data Sheet

8/9

https://support.codesys.com
https://store.codesys.com


Note: Technical specifications are subject to change. Errors and omissions excepted. The

content of the current online version of this document applies.

Creation date: 2023-08-21

Product Data Sheet

9/9


	Azure IoT Hub Client SL¶
	Product description¶
	Getting started¶
	1. Set up Azure IoT Hub and create devices in IoT Hub¶
	2. Generate shared access signatures (SaS tokens)¶
	3. Setting the name of the IoT hub, device ID, and SaS token in the sample project¶
	4. Downloading the project to the controller and starting it¶
	Application AzureHTTPDemo¶
	Applikation AzureMQTTDemo¶
	5. Sending and receiving messages with the tool ‘Azure IoT Explorer’¶
	Options¶

	General information¶
	System requirements and restrictions¶


